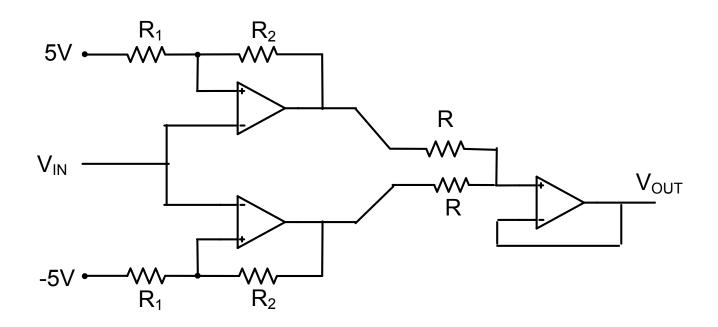
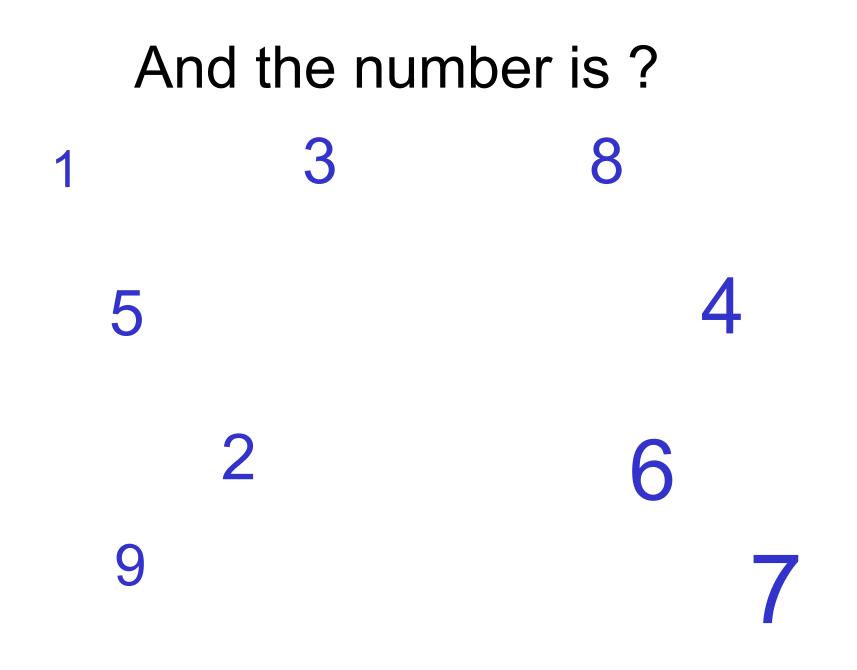
EE 230 Lecture 23

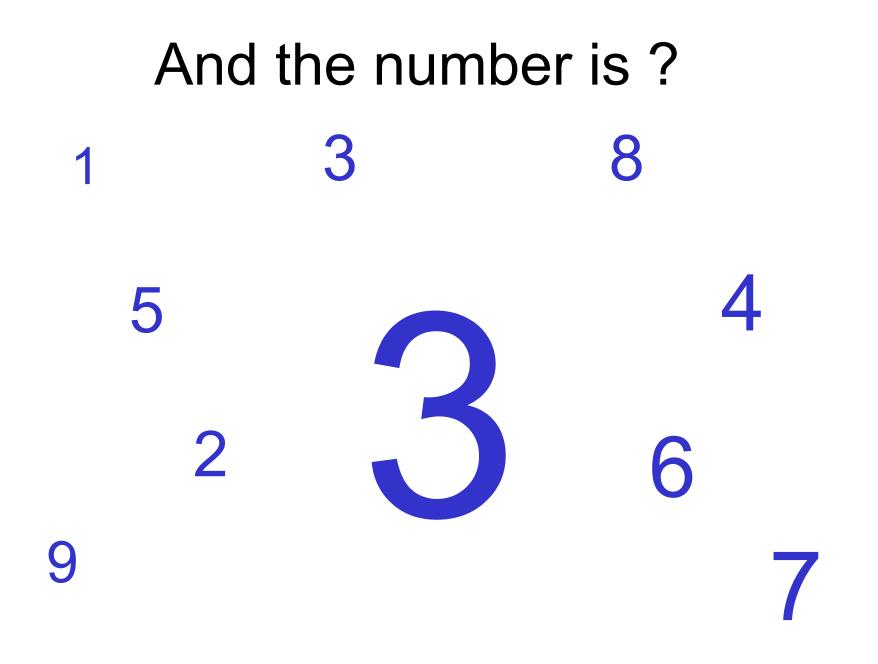
Nonlinear Op Amp Applications - waveform generators

Quiz 16

Obtain an expression for and plot the transfer characteristics of the following circuit. Assume $R_1=2K$, $R_2=8K$, R=10K, $V_{DD}+15V$, $V_{SS}=-15V$



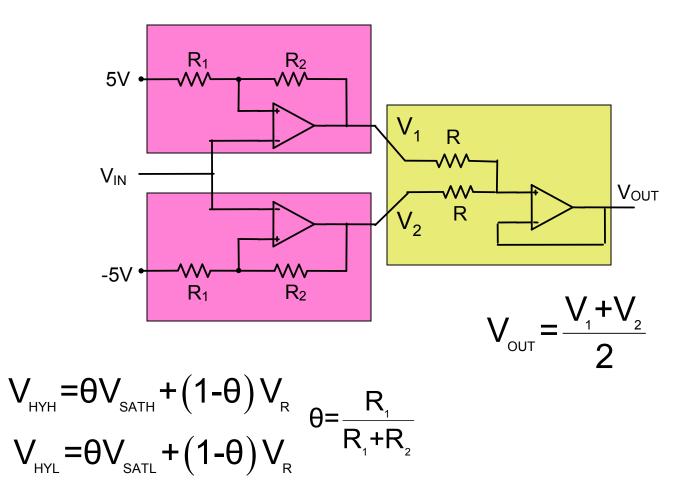




Quiz 16

Obtain an expression for and plot the transfer characteristics of the

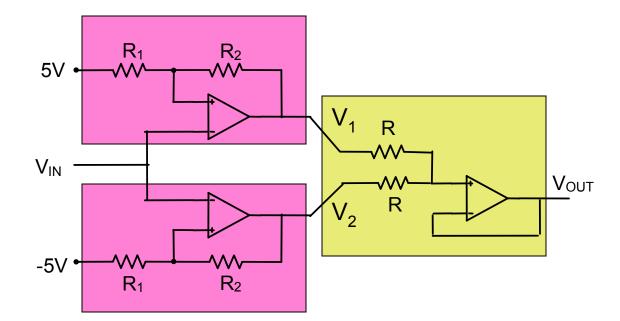
following circuit. Assume R_1 =2K, R_2 =8K, R=10K, V_{DD} +15V, V_{SS} =-15V



Quiz 16 Solution:

Obtain an expression for and plot the transfer characteristics of the

following circuit. Assume R_1 =2K, R_2 =8K, R=10K, V_{DD} +15V, V_{SS} =-15V



$$\theta = \frac{R_{1}}{R_{1} + R_{2}} = 0.2$$

$$V_{HYH} = \theta V_{SATH} + (1 - \theta) V_{R} = 3V + 4V = 7V$$

$$V_{HYH} = \theta V_{SATH} + (1 - \theta) V_{R} = -3V + 4V = 1V$$

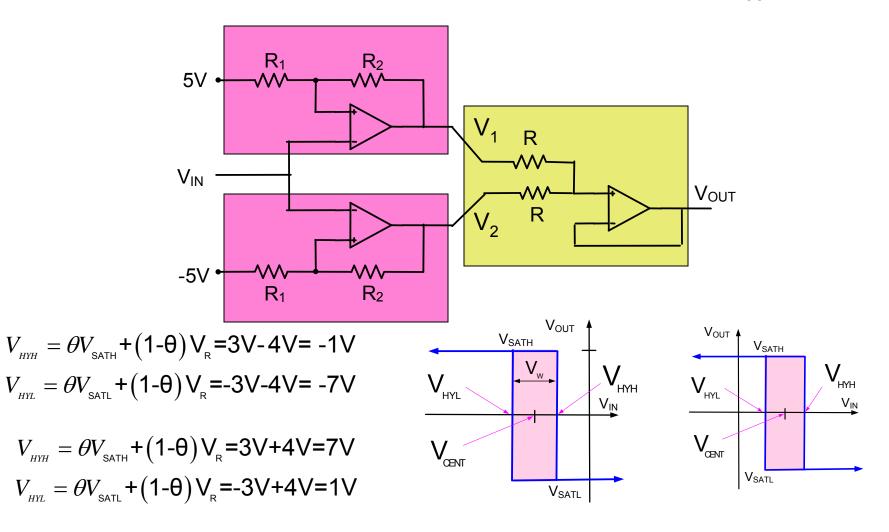
$$V_{HYL} = \theta V_{SATL} + (1 - \theta) V_{R} = -3V + 4V = 1V$$

$$V_{HYL} = \theta V_{SATL} + (1 - \theta) V_{R} = -3V - 4V = -7V$$

Quiz 16

Obtain an expression for and plot the transfer characteristics of the

following circuit. Assume R_1 =2K, R_2 =8K, R=10K, V_{DD} +15V, V_{SS} =-15V



Quiz 16 Solution:

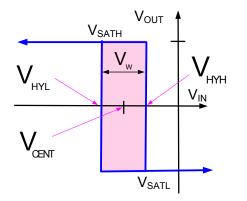
Obtain an expression for and plot the transfer characteristics of the following circuit. Assume R₁=2K, R₂=8K, R=10K, V_{DD}+15V, V_{SS}=-15V

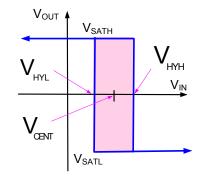
$$V_{HYH} = \theta V_{SATH} + (1-\theta) V_{R} = 3V - 4V = -1V$$

$$V_{HYH} = \theta V_{SATH} + (1-\theta) V_{R} = 3V + 4V = 7V$$

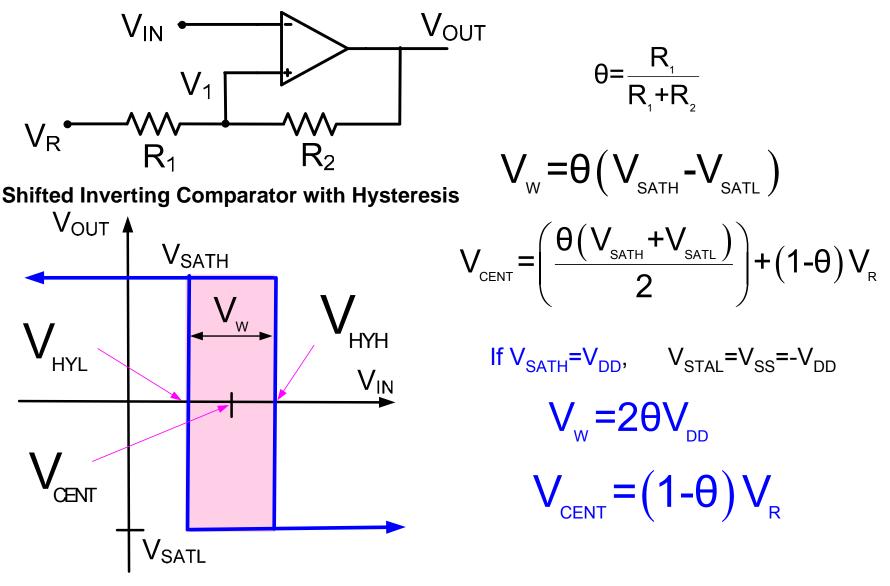
$$V_{HYH} = \theta V_{SATH} + (1-\theta) V_{R} = -3V - 4V = -7V$$

$$V_{HYL} = \theta V_{SATL} + (1-\theta) V_{R} = -3V + 4V = 1V$$





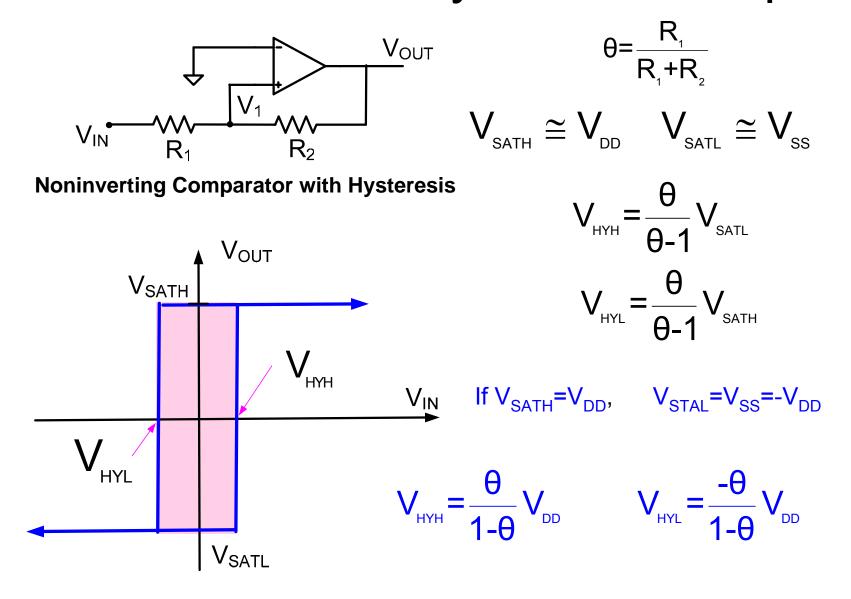
Review from Last Time:



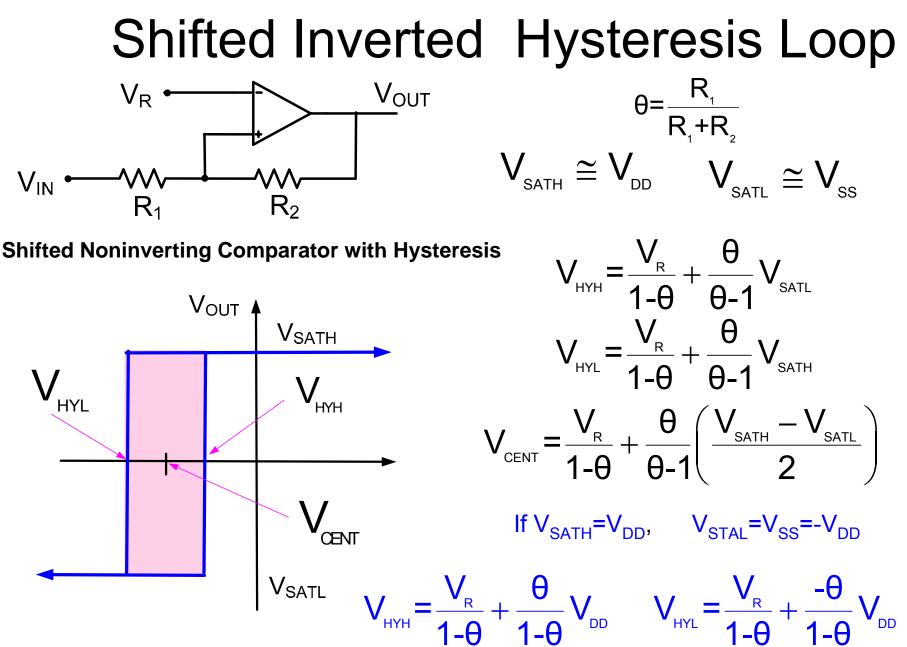
Shift can be to left or right depending upon sign of V_R

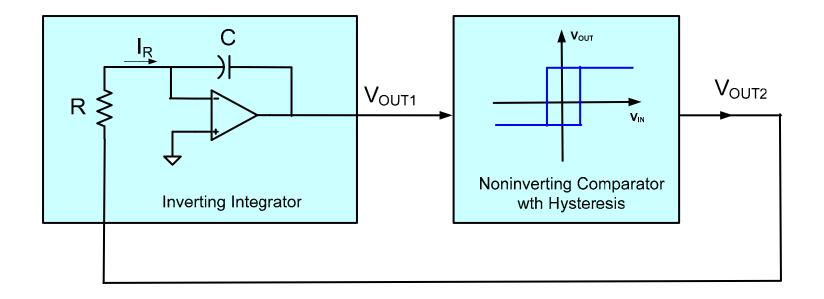
Review from Last Time:

Inversion of Hysteresis Loop

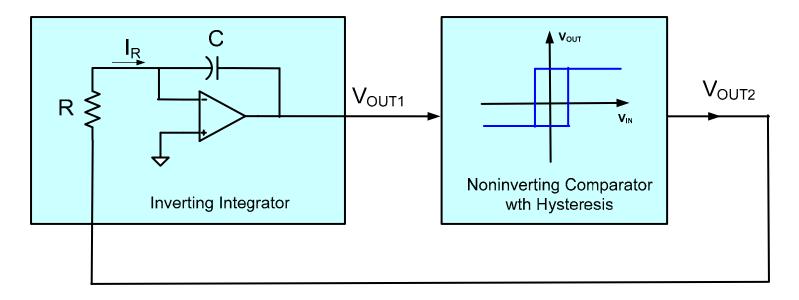


Review from Last Time:

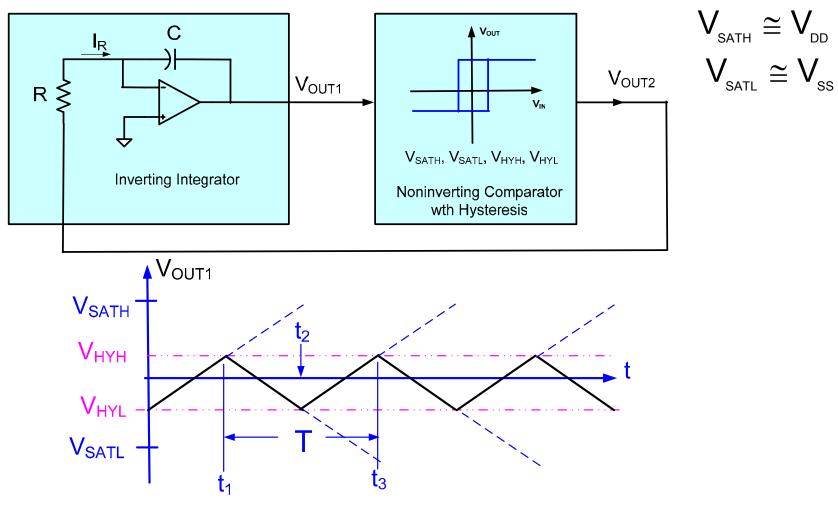




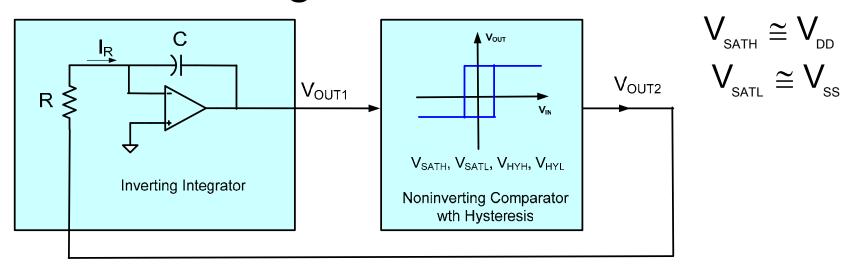
Goal: Determine how this circuit operates, the output waveforms, and the frequency of the output

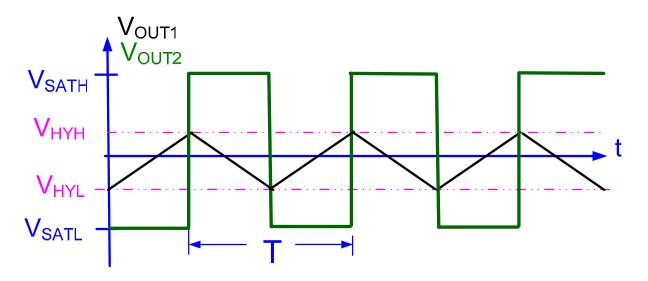


Since the comparator will be in one of two states, the current in the resistor will be constant when $V_{OUT2}=V_{SATH}$ and will be constant when $V_{OUT2}=V_{SATL}$ Analysis strategy: Guess state of the V_{OUT2} , solve circuit, and show where valid when $V_{OUT2}=V_{SATH}$, I_R will be positive and V_{OUT1} will be decreasing linearly when $V_{OUT2}=V_{SATH}$, I_R will be positive and V_{OUT1} will be increasing linearly



Observe T = $t_3 - t_1 = (t_2 - t_1) + (t_3 - t_2)$



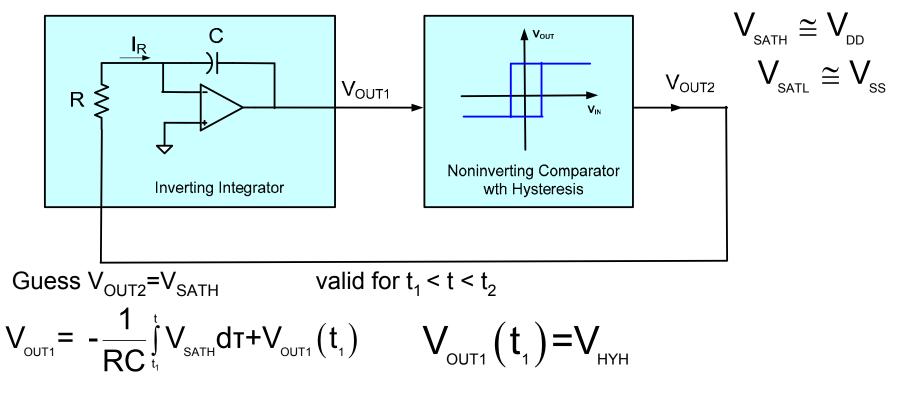




Guess $V_{OUT2} = V_{SATH}$ will obtain $t_2 - t_1$

$$V_{\text{out1}} = -\frac{1}{RC} \int_{t_1}^{t} V_{\text{sath}} dt + V_{\text{out1}}(t_1)$$
$$V_{\text{out1}}(t_1) = V_{\text{hyph}}$$

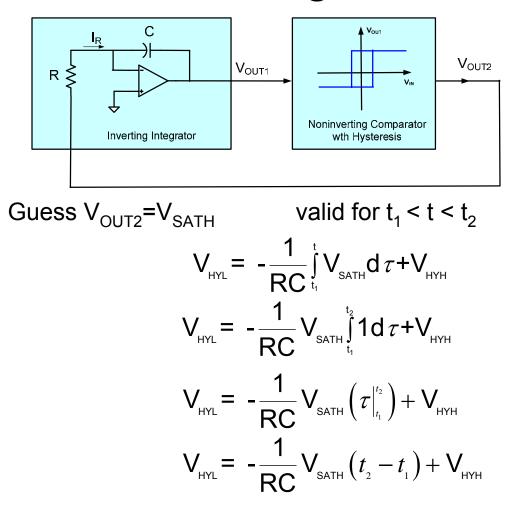
valid for $t_1 < t < t_2$



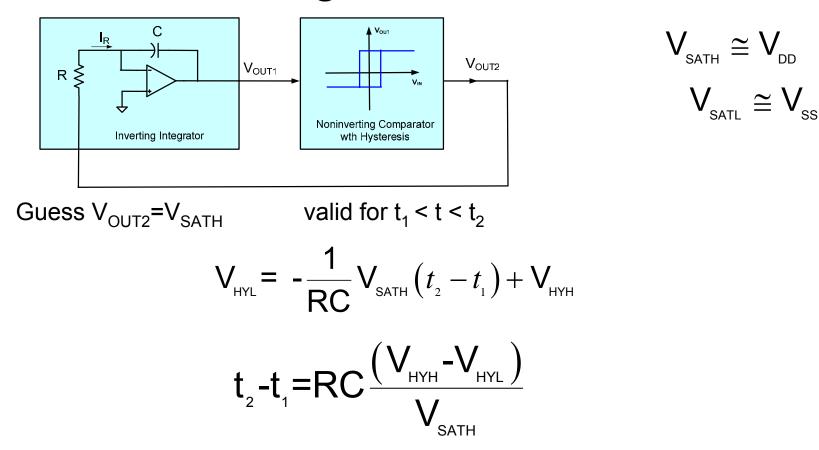
at t=t₂, V_{OUT1} will become V_{SATL}

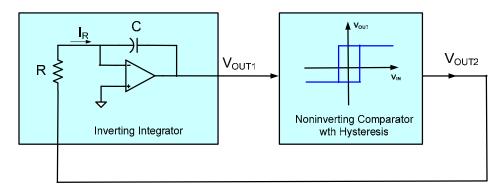
Substituting into integral expression for V_{OUT1} we obtain

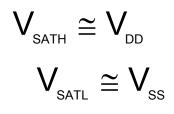
$$V_{HYL} = -\frac{1}{RC} \int_{t_1}^{t} V_{SATH} dT + V_{HYH}$$



$$V_{sath} \cong V_{dd}$$
 $V_{sath} \cong V_{ss}$







Guess V_{OUT2} = V_{SATL}

will obtain t₃-t₂

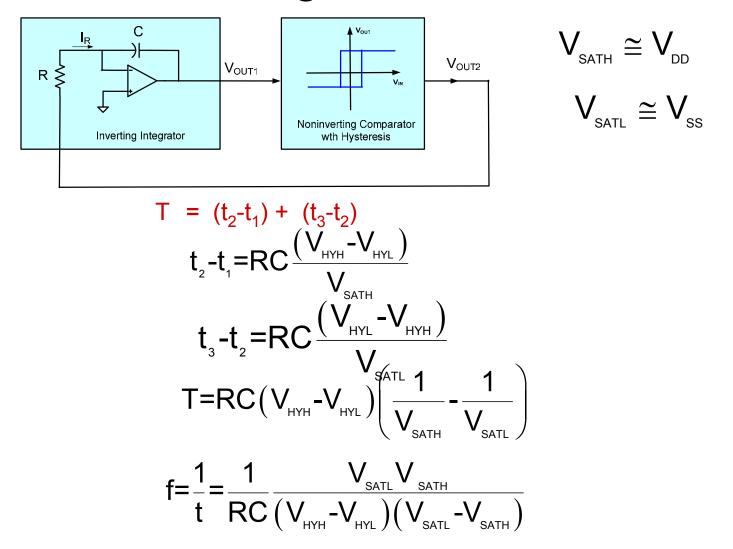
valid for $t_2 < t < t_3$

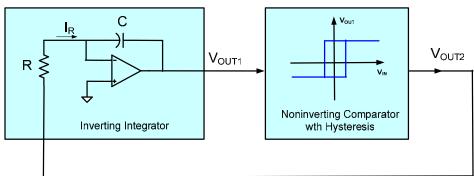
Following the same approach observe

$$V_{\text{OUT1}} = -\frac{1}{RC} \int_{t_2}^{t} V_{\text{SATL}} dt + V_{\text{OUT1}}(t_2)$$
$$V_{\text{OUT1}}(t_2) = V_{\text{HYL}}$$

It thus follows that

$$V_{HYH} = -\frac{1}{RC} V_{SATL} (t_3 - t_2) + V_{HYL} \qquad t_3 - t_2 = RC \frac{(V_{HYL} - V_{HYH})}{V_{SATL}}$$





$$f = \frac{1}{RC} \frac{V_{SATL} V_{SATH}}{(V_{HYH} - V_{HYL})(V_{SATL} - V_{SATH})}$$

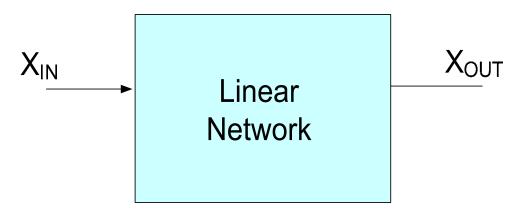
If we use the noninverting comparator with hysteresis circuit developed previously and if R_1

" If $V_{SATH} = V_{DD}$, $V_{STAL} = V_{SS} = -V_{DD}$ $\theta = \frac{R_1}{R_1 + R_2}$ then $V_{HYH} = \frac{\theta}{1 - \theta} V_{DD}$ $V_{HYL} = \frac{-\theta}{1 - \theta} V_{DD}$ $f = \frac{1}{2RC} \frac{1 - \theta}{\theta}$

Stability and Waveform Generation

- Waveform generators provide an output with no excitation
- Waveform circuits are circuits that, when operated in quiescent linear condition, have one or more poles in the right half-plane
- Will now investigate the pole locations of waveform generators
 - Conditions for oscillation
 - Triangle/Square/Sinusoidal Oscillations

Poles of a Network



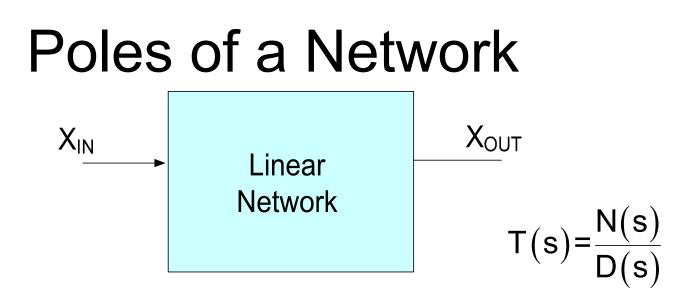
$$T(s) = \frac{X_{out}(s)}{X_{in}(s)}$$

T(s) can be expressed as

$$T(s) = \frac{N(s)}{D(s)}$$

where N(s) and D(s) are polynomials in s

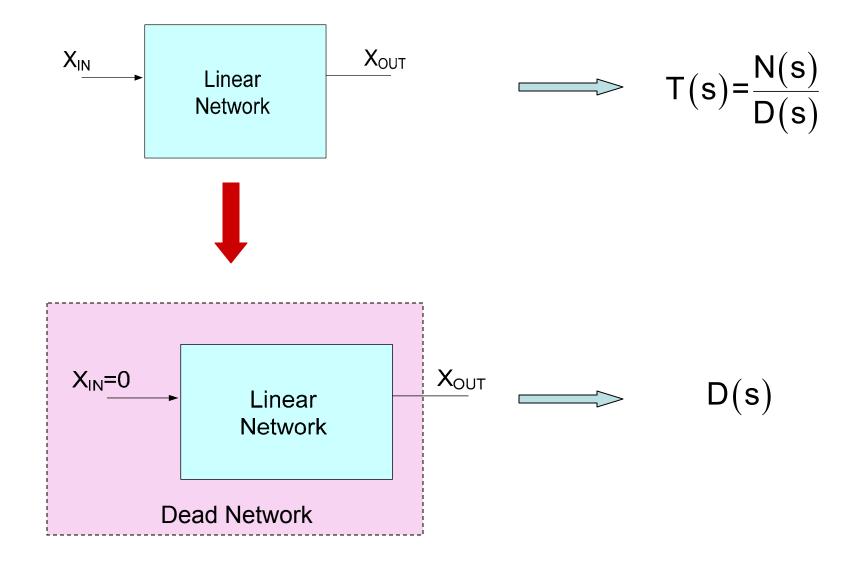
- D(s) is termed the characteristic equation or the characteristic polynomial of the network
- Roots of D(s) are the poles of the network

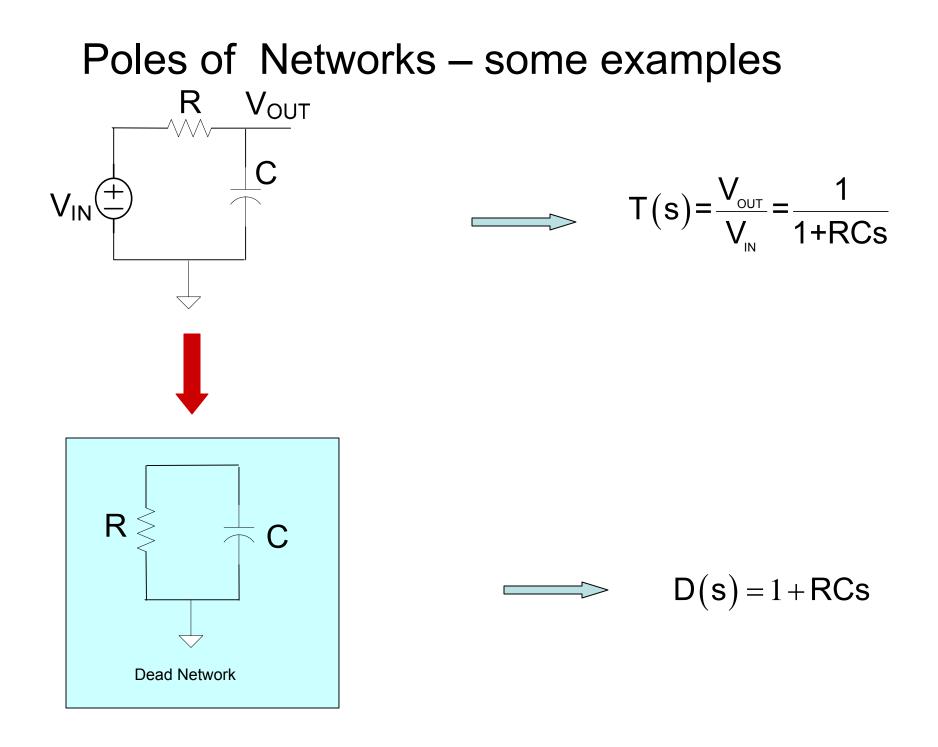


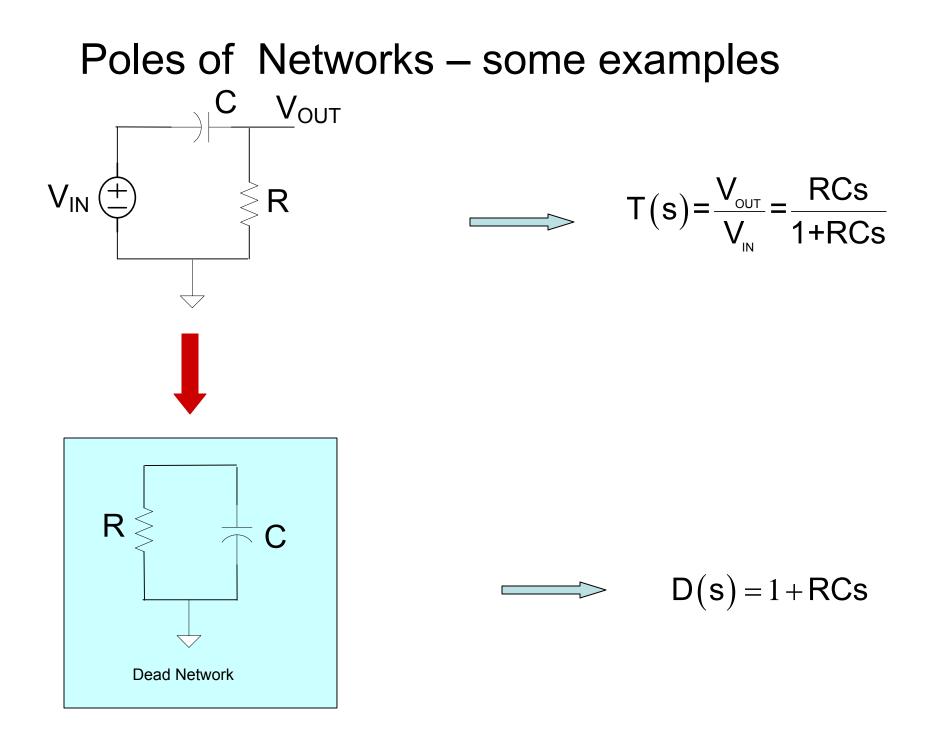
Theorem: The poles of any transfer function of a linear system are independent of where the excitation is applied and where the response is taken provided the dead networks are the same

Equivalently, the characteristic equation, D(s), is characteristic of a network (or the corresponding dead network) and is independent of where the excitation is applied and where the response is taken.

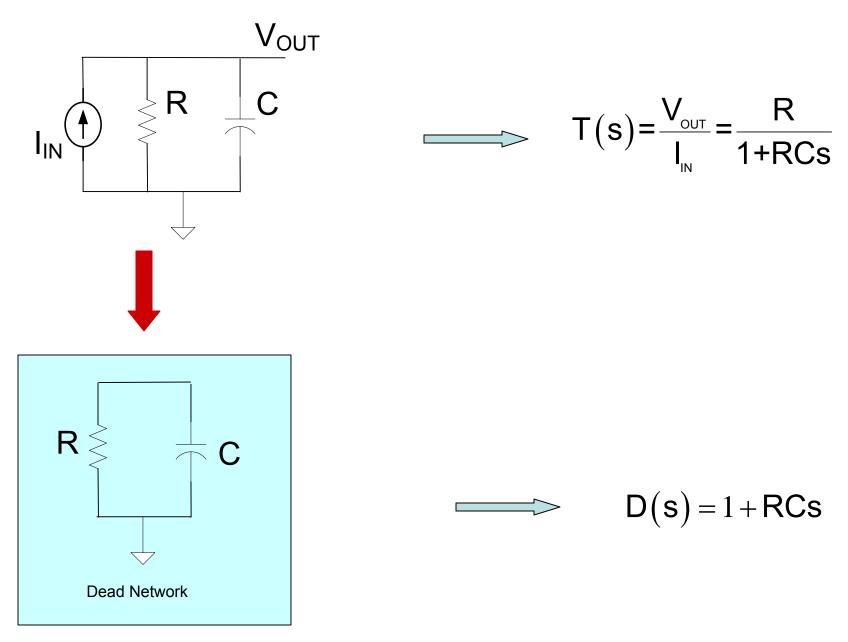
Poles of a Network



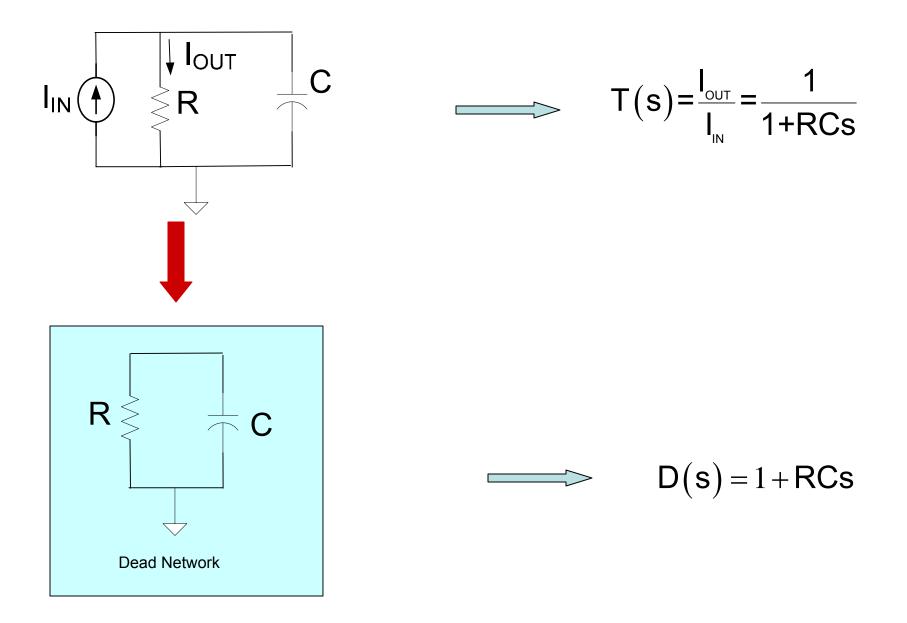




Poles of Networks – some examples



Poles of Networks – some examples



Poles of Networks – some examples

